Initial layer problem of the Boussinesq system for Rayleigh-Bénard convection with infinite Prandtl number limit
نویسندگان
چکیده
منابع مشابه
Infinite Prandtl Number Limit of Rayleigh-Bénard Convection
We rigorously justify the infinite Prandtl number model of convection as the limit of the Boussinesq approximation to the Rayleigh-Bénard convection as the Prandtl number approaches infinity. This is a singular limit problem involving an initial layer.
متن کاملPrandtl number dependence of the viscous boundary layer and the Reynolds numbers in Rayleigh-Bénard convection.
We report results from high Prandtl number turbulent thermal convection experiments. The viscous boundary layer and the Reynolds number are measured in four different fluids over wide ranges of the Prandtl number Pr and the Rayleigh number Ra, all in a single convection cell of unity aspect ratio. We find that the normalized viscous layer thickness may be represented as delta(v)/L=0.65Pr(0.24)R...
متن کاملRayleigh-Bénard convection with rotation at small Prandtl numbers.
We present experimental and theoretical results near the onset of the Rayleigh-Bénard convection with rotation about a vertical axis in a fluid with a Prandtl number sigma close to 0.18. In the experiment we used a H2-Xe gas mixture with a separation ratio Psi=0.22 and a Lewis number L=1.22 at various pressures and dimensionless rotation rates Omega up to 400. On the basis of a standard weakly ...
متن کاملPrandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh-Bénard convection.
Experimental and numerical data for the heat transfer as a function of the Rayleigh, Prandtl, and Rossby numbers in turbulent rotating Rayleigh-Bénard convection are presented. For relatively small Ra approximately 10(8) and large Pr modest rotation can enhance the heat transfer by up to 30%. At larger Ra there is less heat-transfer enhancement, and at small Pr less, similar 0.7 there is no hea...
متن کاملNon-oberbeck-boussinesq effects in gaseous Rayleigh-Bénard convection.
Non-Oberbeck-Boussinesq (NOB) effects are measured experimentally and calculated theoretically for strongly turbulent Rayleigh-Bénard convection of ethane gas under pressure where the material properties strongly depend on the temperature. Relative to the Oberbeck-Boussinesq case we find a decrease of the central temperature as compared to the arithmetic mean of the top- and bottom-plate temper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Mathematics
سال: 2018
ISSN: 2391-5455
DOI: 10.1515/math-2018-0094